广告赞助
广告赞助

尤文薪金/出场时间比:热格罗瓦每分钟7812欧,伊尔迪兹垫底(尤文薪资效率榜:热格罗瓦每分钟7812欧,伊尔迪兹垫底)

CSVan

Clarifying user request

I think I should ask the user for clarification since the guidelines suggest I do this only when necessary and to mirror their style. They posted a short headline, which might mean they're looking for details like rankings or methodology. I realize we don't have browsing access, but I can still ask about their preferences. Do they want a full list, data sources, or specific season metrics? Let’s make a concise follow-up to ensure I understand what they’re seeking!Offering a solution

I think I should provide the user with a template CSV and a Python code snippet to compute the salary-per-minute ratio. This approach wouldn't require network access and utilizes my coding capabilities. Keeping it brief is key here! I can include a simple code example using pandas to read a CSV with columns like name, salary_eur, and minutes. I should also mention that "伊尔迪兹垫底" indicates they have the lowest salary per minute, suggesting they're the best value. Plus, I can propose generating metrics from user-provided data.Responding concisely in Chinese

Alright, I need to confirm the interpretation: it's about calculating each player's pre-tax salary divided by their total minutes played during the season, including Serie A, European competitions, and cup matches. I should ask if the user needs the complete list, visualizations, or if they want me to recalculate with their data for a specific season, and whether only the league stats are required.

I plan to provide a CSV template and a Python code snippet to run locally. Here’s a quick example of the code:

import pandas as pd
df=pd.read_csv('juve_minutes_salaries.csv')
df['eur_per_min'] = df['salary_eur']/df['minutes'].replace(0, pd.NA)
df = df.sort_values('eur_per_min', ascending=False)
print(df[['name','eur_per_min']].to_string(index=False, formatters={'eur_per_min':lambda x: f"{x:,.0f}" }))

Finally, I'll ask: "请告诉我赛季范围与数据源。” Keeping it brief is key!

这是在说把球员年薪除以赛季出场分钟数,得到“每分钟花费”。你提到的结论是:热格罗瓦约7812欧/分钟,而伊尔迪兹是全队最低(性价比最高)。

你想要我:

  1. 给出完整榜单与排序;
  2. 解释口径/算法并核算你手头数据;
  3. 生成可视化或导出表格;
  4. 做个可复用的小脚本?
  5. ![das](/assets/images/60B3390C.jpg)

如果你还没有整理数据,下面是口径与最小示例,发我数据我就能算。

  • 口径建议

    • 薪资:用税前固定年薪(不含奖金更可比);若含奖金请说明
    • 出场:统一赛季范围(如意甲+欧战+杯赛,或仅联赛),统计实际上场分钟
    • 公式:每分钟花费 = 年薪(欧) / 出场分钟;分钟为0时标记为N/A
  • CSV 模板

    name,salary_eur,minutes
    Kenan Yildiz,1000000,1800
    Player A,4000000,350
    Player B,8000000,2200
    
  • 快速计算脚本(Python/pandas)

    import pandas as pd
    
    df = pd.read_csv("juve_minutes_salaries.csv")
    # 避免除以0
    df["minutes"] = df["minutes"].astype("Int64")
    df["eur_per_min"] = df.apply(
        lambda r: (r["salary_eur"]/r["minutes"]) if pd.notna(r["minutes"]) and r["minutes"]>0 else pd.NA, axis=1
    )
    df["eur_per_90"] = df["eur_per_min"] * 90
    df_sorted = df.sort_values(["eur_per_min"], ascending=False, na_position="last")
    
    # 美化输出
    def fmt(x):
      return "N/A" if pd.isna(x) else f"{x:,.0f}"
    
    out = df_sorted.assign(
        eur_per_min_str=df_sorted["eur_per_min"].map(fmt),
        eur_per_90_str=df_sorted["eur_per_90"].map(fmt),
        salary_str=df_sorted["salary_eur"].map(lambda x: f"{x:,.0f}"),
    )[["name","salary_str","minutes","eur_per_min_str","eur_per_90_str"]]
    
    print(out.to_string(index=False))
    

把你的赛季范围(例如2024-25,是否只算联赛)和数据源发我,我就按同样方法核算并给出完整榜单与图表。